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OUTLINE

§ What are Options?
§ Different Types

• CALL & PUT

• European & American

§ Diagrams of Payoffs at Maturity
§ Put-Call Parity.

§ Binomial Model:
§ Valuation of options through “replication”;
§ delta of an option and hedging;

§ Volatility;

§ Time to maturity;

§ “Risk Neutral” valuation.

§ Black-Scholes Formula.
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Basic Definitions

§ CALL Option:

§ is a right to buy an (underlying) asset at a pre-established 

exercise (strike) price.

§ PUT Option:

§ Is a right to sell an asset at a pre-established exercise price.

§ European Options:

§ may be exercised only at one date (expiry ou maturity).

§ American Options:

§ May be exercised any time until maturity.
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CALL: 
Payoffs at Maturity

Buyer of the Call (Long):
Payoff

K         Asset 
Value

ST is asset value at maturity
K is the exercise price.

Seller of the Call (Short):

Payoff

K            Asset 
Value

Max(0,ST-K)

Min(0,K-ST)
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PUT: 
Payoffs at Maturity

Buyer of the Put (Long):
Payoff

K                  Asset 
Value

ST is asset value at maturity
K is the exercise price.

Seller of the Put (Short):  
Payoff

K          Asset 
Value

Max(0,K-ST)

Min(0,ST-K)
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BINOMIAL VALUATION OF OPTIONS: 
Example

The Binomial Model assumes that, in 
each period (time step), the return of 
the underlying asset can take one of 
two possible values.
What’s the Price of an Option written 
on such an asset?

(1) Share/Underlying Asset
145  (Boom “Up”)

100
70 (Recession “Down”)

(2) Bond ( Rf rate 25%)
125 (Boom)

100
125 (Recession)

(3) Call Option
(Exercise Price=100)

(Boom)
Option 
Price (Recession)

45

0
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BINOMIAL 
MODEL: 
REPLICATION

§Valuation of Options: using “replication” 
(hedging portfolio);

§ Intuition: find a combination of the stock 
(underlying asset) and the risk-free bond, 
which exactly reproduces the payoffs of 
the option at the maturity.
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DELTA OF THE CALL OPTION: 
WHAT? HOW?
§ What? The component of shares (underlying asset) in the replicating portfolio is 

the delta of the option (D);

§ Note that a call option is a leveraged position on the stock;

§ To compute the delta of the option (D), we must solve the following equations:
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§ Solving:

§ The value of the option is:
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BS +D
§ For this example:

D = 0.6; B = - 33.6 ;  The option value is: 0.6*100-33.6=26.4
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BINOMIAL MODEL: 
REPLICATION - Example, let’s check the no arbitrage argument

Share Bond Total
Portfolio 0.6 -33.6 -

Payoff in 
Boom

0.6*145
= 87

-33.6*1.25
= -42

45

Payoff in 
Recession

0.6*70
= 42

-33.6*125
= -42

0

Price 100 1 -

Value of the 
Portfolio

60.0 -33.6 26.4
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BINOMIAL 
MODEL:

RISK-NEUTRAL 
METHOD

§ Note: the Risk Neutral valuation derives from the replicating 
portfolio method; 

§ Note: the Risk Neutral method is valid for multi-period 
problems.

§ How does it work? By computing the “risk neutral” probabilities 
of the nodes, and discounting the expected payoffs at the risk-
free rate.

§ Value of the Call = DS+B

May also be written as:

where:

§ p is the “ risk neutral” probability of the boom scenario (and 
(1-p) of the recession  scenario);

§ r represents the discount factor at the risk-free rate. For 
example:                                                    

The value of the Call Option is, again, 26.4.
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Time to Maturity­ÞValue of the Call­

§ Share: u=1.45; d=0.7

145
100

70

210.25

101.5

49

Value of the Option?            110.25
?

C 1.5
??

0
Solve for “?”:

?? equals 0.88.
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… continues …
… continues …

110.25

65

C 1.5

0.88

0

§ Finally, the value of the call “today” should be:

( )
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MOVING TO THE 
BLACK-SCHOLES 

MODEL

§ In reality, shares may assume many values. Even 
so, it is possible to “replicate” an option with a 
portfolio of riskless debt and shares of the 
underlying asset, for a short interval of time.

§ The Black-Scholes model assumes that the rate 
of return of the underlying asset follows a 
Random Walk.
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BLACK-SCHOLES 
FORMULA

§ Value of the Option = Delta*Price of Share – RiskFree Loan

C =  N(d1)* S                     - N(d2)*PV(K)

with:

§ N(d) = Cumulative Normal distribution;

§ K = exercise price of call;

§ t = time to maturity (in years);

§ S = current share price;

§ s = volatility (standard deviation of the rate of return of the underlying 
asset).

§ NOTE: to establish a “link” between gthe Black-Scholes Annual Volatility and 
the Binomial parameters u and d, for a “branch movement” of “dt” (for 
example dt=1 if the branch is 1 year long; dt=1/4 if the branch is 3-months 

long, you can use:   𝑢 = 𝑒!. #$ and d = %
&
.

d1 =
ln S

PV K( )
!

"
#

$

%
&

σ t
+
σ t
2

d2 = d1 −σ t
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VOLATILITY 
ESTIMATION: 

Example

§ Based on historical daily prices, 
compute the log-returns, and 
their standard deviation.

§ Example:
§ Annualized Volatility: multiply 

Daily Volatility by the square 
root of the Number of 
transaction days.
§ It’s approximately 250 

(or 260?)

§ s = annualized volatility 

= Ö250*daily volat. = 19.4%

Closing Daily
Stock Price Return

Day Si Si / Si-1 ln(Si/Si-1)
0 20
1 20,125 1,00625 0,006231
2 19,875 0,987578 -0,0125
3 20 1,006289 0,00627
4 20,5 1,025 0,024693
5 20,25 0,987805 -0,01227
6 20,875 1,030864 0,030397
7 20,875 1 0
8 20,875 1 0
9 20,75 0,994012 -0,00601

10 20,75 1 0
11 21 1,012048 0,011976
12 21,125 1,005952 0,005935
13 20,875 0,988166 -0,0119
14 20,875 1 0
15 21,25 1,017964 0,017805
16 21,375 1,005882 0,005865
17 21,375 1 0
18 21,25 0,994152 -0,00587
19 21,75 1,023529 0,023257
20 22 1,011494 0,011429

STD. DEV 0,012308
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PUT OPTIONS: 
BINOMIAL 

MODEL

(1) Share
145(Boom)

100   
70(Recession)

(2) Bond ( Rf 25%)
125  (Boom)

100
125 (Recession)

(3) Put Option (K = 100)
(Boom)

Option
Price (Recession)

0

30

What’s the
price of the 
Put Option?

Financial Markets and Management MiM  – ISEG LISBON 17



PUT-CALL 
PARITY

In the 1-period example:

Share Price = 100

PV(K) = 100/1.25 = 80

Call Price = 26.4

Put Price = 6.4

§ Put-Call Parity for European 
options, with the same exercise 
price, same time to maturity, 
and same underlying asset (and 
no dividend payment)

C - P = S - PV(K)

NOTE: To compute the value of the Put Option, can also build the replicating/hedging portfolio or apply the Risk-
Neutral Vauation Method.

Financial Markets and Management MiM  – ISEG LISBON 18



PUT-CALL PARITY

ST0

ST

Value of the Underlying Asset S,
at maturity, time T

K

K

- K

STK
0

K

- K

CT

-PT

Payoff of Seling a Put Option, 
at matutity, time T
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PUT-CALL PARITY

ST0

ST

Value of the Underlying Asset S,
at maturity, time T

K

K

- K

STK
0

K

- K

CT

-PT

Payoff of Seling a Put Option, 
at matutity, time T

ST-K

CT-PT

At maturity T:  CT-PT=ST-K
So, at any time t before maturity: Ct-Pt=St-PVt(K)
Generally Speaking: C-P=S-PV(K)
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MAIN DETERMINANTS OF THE VALUE OF AN OPTION

­ Means that the value of the option increases when this variable 
goes up;

¯ Means that the value of the option decreases when the value of 
this variable goes up;

**  means that the effect is ambiguous for european options.

Call Put

Current
Stock price

­ ¯

Exercise
Price

¯ ­

Time to
maturity

** **

Stock
Volatility

­ ­

Interest
Rate

­ ¯

Cash
Dividends

¯ ­
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AMERICAN VERSUS EUROPEAN: CALLS

Think of an American Call 
Option.

Early Exercise implies:
Gain: 

Dividend;

Loss:
Interest in the Exercise Price 
paid; 
Option.

§ Therefore:
§ Non-Dividend-Paying Shares:

§ It is never optimal to exercise 
early;

§ American and European are 
worth the same.

§ Dividend-Paying Shares:

§ American Call ³ European Call 
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AMERICAN VERSUS EUROPEAN: PUTS

§ Think of an American Put 
Option.

§ Early Exercise implies:
§ Gain:

§ Interest on the exercise price.

§ Loss:
§ Dividend;
§ Option.

Hence:

• Exercising Early may be 
optimal even if there are no 
dividends.

• American Put ³ European Put
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APPENDIX
Tools & Tricks

1. TRICKS TO MOVE FROM THE CONTINUOUS TIME WORLD OF 
BLACK SCHOLES TO THE BINOMIAL MODEL

2. HOW TO USE THE BINOMIAL MODEL WITH DIFFERENT TIME 
STEPS dt

3. STEPS TO FOLLOW IN TO APPLY THE BINOMIAL MODEL 

(considering continuous docounting rate Rf)
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Appendix
1,2

1. FROM BS TO BINOMIAL

§ Given the Black Scholes Volatilty Parameter Sigma 𝜎
§ And Continuous Discounting at Risk Free Rate Rf

2. HOW TO USE THE BINOMIAL MODEL WITH DIFFERENT TIME STEPS 
dt

§ For the Binomial Valuation you must know first the “Time Step” dt
for each “jump in the Tree”:

§ Given dt

§ Compute 𝑢 = 𝑒! "#

§ Compute 𝑑 = $
%

§ Compute 𝑝 = &!".$%'"
%'"

§ Note: If you want another valuation with a different time step dt, then 
you must recompute u, d and p.
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Appendix 
3

3. STEPS TO FOLLOW TO USE THE BINOMIAL MODEL

1. Given dt, Sigma and Rf, calculate:

§ Compute 𝑢 = 𝑒! #$

§ Compute 𝑑 = %
&

§ Compute 𝑝 = '!".$%(#
&(#

2. Build the Tree for the Underlying Asset S

3. Compute the Tree of the Option, starting with the Payoffs at 
Maturity.

4. Move backwards every period, by discounting the payoffs of the 
Option in final period T to period (T-1) with risk neutral probability 
p and risk-free rate Rf, and repeat the procedure.

5. Until you get the Value of the Option at time 0.
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Example
• Suppose you know 𝑅! = 2% 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑖𝑛𝑔, 𝑆" = 100, 𝜎 = 30%.

• There is a Call Option with 𝐾 = 95, 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑇 = 1 𝑦𝑒𝑎𝑟

• You want to use the Binomial Model with time step 𝑑𝑡 = #
$
, with jumps of 1 semester.

1. Given dt = 0.5, compute u, d, p:

𝑢 = 𝑒% &' = 𝑒".) ".* = 1.2363111

𝑑 =
1
𝑢
=

1
1.2363111

= 0.8088579

𝑝 =
𝑒+,.&' − 𝑑
𝑢 − 𝑑

=
𝑒"."$∗".* − 0.8088579

1.2363111 − 0.8088579
= 0.4706767
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2. Build the Tree for the Underlying Asset S:

t=0 t=0.5 t=1
dt=0.5 dt=0.5

𝑆" = 100
𝑆. = 𝑢𝑆" = 1.236311×100
= 123.6311

𝑆& = 𝑑𝑆" = 0.8088579×100
= 80.88579

𝑆.. = 1.2361×123.6311
= 152.84652

𝑆.& = 𝑆&.
= 0.80885×123.6311
= 1.236311×80.88579
= 100

𝑆&&
= 0.8088579×80.88579
= 65.425109
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3. Compute the Payoffs at Maturity for the Option:

t=0 t=0.5 t=1
dt=0.5 dt=0.5

𝑆" = 100 123.6311

80.88579

152.84652

100
65.425109

Payoffs at Maturity for the Option:
𝑚𝑎𝑥 𝑆%% − 𝐾, 0
= 𝑚𝑎𝑥 152.84652 − 95,0
= 57.84652

𝑚𝑎𝑥 100 − 95,0 = 5

𝑚𝑎𝑥 65.425109 − 95,0 = 0
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4. Discount Back Payoffs at Maturity of the Option:

t=0 t=0.5 t=1
dt=0.5 dt=0.5

𝐶" 𝐶.

𝐶&

57.84652

5
0

p p

p
1-p

1-p

1-p

Remember:
𝑅! = 2%

𝑝 = 0.4706767
1 − 𝑝 = 0.5293233

𝐶" = 𝑒/"."$×".* 0.4706767×29.5763768 + 0.5293233×2.32996699 = 15.0034305

𝐶. = 𝑒/+,×&' 𝑝×𝐶.. + 1 − 𝑝 𝐶.&

= 𝑒/"."$×".* 0.4706767×57.84652 + 0.5293233×5 = 29.5763768

𝐶& = 𝑒/"."$×".* 0.4706767×5 + 0.5293233×0 = 2.32996699
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Rf 2%
Sigma 30%
So 100

K 95
T 1

dt 0,5

u 1,23631111
d 0,80885789
p 0,47067671
1-p 0,52932329

TREE UNDERLYING ASSET S
t=0 0,5 1

100 123,631111 152,846516
80,8857893 100

65,4251092
TREE CALL OPTION
15,0034305 29,5763768 57,846516

2,32996699 5
0
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